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Sand banks and sand waves are two types of sand structures that are commonly
observed on an off-shore sea bed. We describe the formation of these features using
the equations of the fluid motion coupled with the mass conservation law for the
sediment transport. The bottom features are a result of an instability due to tide–
bottom interactions. There are at least two mechanisms responsible for the growth
of sand banks and sand waves. One is linear instability, and the other is nonlinear
coupling between long sand banks and short sand waves. One novel feature of this
work is the suggestion that the latter is more important for the generation of sand
banks. We derive nonlinear amplitude equations governing the coupled dynamics of
sand waves and sand banks. Based on these equations, we estimate characteristic
features for sand banks and find that the estimates are consistent with measurements.

1. Introduction
1.1. General

Water motion over a sandy bed often leads to formation of various regular bottom
structures. Examples of such features are sand bars in straight channels (see Schielen,
Doelman & De Swart 1993; Komarova & Newell 1995); small sand ripples under sea
waves (Blondeaux 1990); and sand waves and sand banks in tidal seas (Hulscher 1996;
Hulscher, De Swart & De Vriend 1993). These features occur on very different scales
and have different characteristics. Table 1 gives definitions of some sand patterns.
It includes their typical sizes and the kind of water flows which are thought to be
responsible for the bed feature generation. It is interesting that some of the patterns
listed in table 1 can coexist in nature. For instance, sand waves are often observed on
top of tidal banks (see Huntley et al. 1993; Stride 1982 and figure 1). The coexistence
of alternate bars and a mean flow component, the last two patterns of table 1, has been
demonstrated. Ripples and megaripples are often seen together near the shore line,
where sea waves ebb and flow. In each of these situations, the two coexisting features
have vastly different wavelengths. These observations lead us to ask whether long and
short waves are generated independently or whether they are dynamically coupled so
that the appearance of short-scale waves requires the presence of longer-scale features.

To describe the formation of sand patterns under water, one has to couple the
hydrodynamic equations of motion with an equation describing the behaviour of
sand. The equations of motion for water derive from the Navier–Stokes equation
by means of appropriate approximations (shallow water, deep water) and relevant
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Name Flow Size References

Ripples Sea waves 6–12 cm Blondeaux (1990)
Megaripples Sea waves 1–5 m Knaapen (1999), Larcombe & Jago (1996)
Sand waves Tides 200–800 m Hulscher (1996), Huntley et al. (1993)
Tidal banks Tides 2–10 km Hulscher (1996), Huntley et al. (1993)
Alternate bars Unidirectional flow 5–10 m Schielen et al. (1993)
‘Mean flow’ Unidirectional flow 50–100 m Komarova & Newell (1995)

Table 1. Definitions of sand patterns.

boundary conditions. To describe the bed profile, a mass conservation law based
on an empirical formula for the sediment flux is usually used. Despite a variety
of formulations, one common feature can be found in all such systems, namely the
existence of a soft mode arising from a common symmetry. The soft mode in the sand
ripple/megaripple and sand wave/sand bank systems is the vertical translation of the
sea bed. It is represented by a deformation of the sea bed which varies significantly
only over distances long compared with the wavelength excited directly by instability.
Through nonlinearity, this mode is driven by slow variations in the intensity of the
fields of the unstable sand ripples or sand waves. This result is very general and is
not affected by the fact that the basic instability mechanism might differ from system
to system.

In this paper, we study the nonlinear generation of sand banks by sand waves.
Whereas linear stability theory (see Hulscher 1996) does reasonably well in predicting
the onset and presence of sand waves, it has been less successful in explaining
the simultaneous appearance of sand banks, which are up to ten times larger. The
available theories (see Hulscher et al. 1993; De Vriend 1990; and Dyer & Huntley
1999 for reviews on sand bank generation) predict a growth-rate time scale of
about 200 years. According to these theories, sand banks and sand waves are created
independently by different physical mechanisms. On the other hand, it is observed that
sand banks and sand waves occur together (in fact, in Stride 1982 it is reported that
tidal banks never occur without sand waves). Also, the equation for the deformation
h of the sand bed contains spatial derivatives of quadratic products of the bottom
stress, which is a functional of h determined by solving the hydrodynamical equations.
When averaged over the sand-wave scale, this equation gives rise to terms analogous
to the Reynolds stress in hydrodynamics and the ponderomotive force in plasma
physics. These terms are proportional to the curvature of the sand wave intensity and
drive a long-wave deformation of the sand bed. We prove that the time it takes the
sand bank deformation to grow to a height of several metres is about 10 years, which
is 20 times faster than the rate suggested by linear theories.

1.2. The main ideas

We take a two-dimensional model with x denoting the horizontal coordinate parallel
to the tide and z the vertical coordinate. The sand bed is denoted by z = h(x, t). The
time dependence of h(x, t) is of the order of years or about 104 times the tidal period
2π/Ω. The spatial structure of interest is a superposition of a sand wave packet
with carrier number kc (corresponding to a wavelength of approximately 200–800 m)
chosen by linear stability considerations, and a large-scale deformation; namely,

h(x, t) = A(x, t)eikcx + c.c.+ B(x, t), (1.1)
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Figure 1. A contour plot of a part of the North Sea bed, based on measurements performed in
1990. Lighter contour lines correspond to deeper water. The direction of the tide is approximately
North–South. Courtesy of Michiel A. F. Knaapen.

where c.c. stands for complex conjugate. Deformations in the sand bed are driven
by a horizontal stress applied to the bed by circulating eddies. The eddies are in
turn induced by averaging the effects of the interaction between the tidal motion and
the bed profile over a tidal period. Consider figure 2. In its left to right cycle, the
tidal motion encounters a favourable pressure gradient from trough T1 to crest C
and an adverse one from C to T2. On the right to left cycle, the favourable pressure
gradient is from T2 to C and the adverse from C to T1. This asymmetry means
that, when averaged over a full cycle, the pressure gradient acts to speed up the flow
from trough to crest near the sand bed. The steady-state circulations shown in figure
2 are the result of this action (see also Komarova & Hulscher 2000 for a detailed
study of this process). If these circulations are sufficiently strong to overcome the
stabilizing influence of gravity (sand grains will tend to roll downhill from the crests
to the troughs), the deformation shown in figure 2 can be amplified until saturated at
some amplitude level by negative nonlinear feedback. This action is described by the
sediment transport equation,

∂th = −∂x〈q〉, q ∝ |τ|b(τ− λ∂xh), (1.2)
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T1
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Figure 2. Basic instability mechanism. The arrows indicate the direction of the steady near-bed
flow caused by the bed deformation. The time-periodic tidal flow is not shown.

where the volumetric flux q is averaged 〈·〉 over a tidal period, and τ is the volumetric
stress tangential to the bed applied by the circulating cells. The parameter λ measures
the ratio of gravity to tidal strength. When it falls below a critical value λc, instability
is triggered and sand waves appear. The parameters λ and b will be discussed later.
Equation (1.2) is the empirical law of bed load transport (see e.g. Bailard 1981; Bailard
& Inman 1981; Falques, Montoto & Iranzo 1996; Schielen et al. 1993; Hulscher 1996)
which takes into account the traction (creeping) and saltation (skipping) of sand
particles but not their transport by suspension. Other authors (Fredsoe 1974; Soulsby
1997; Schuttelaars & De Swart 1996) have included the effects of suspension, but
here the Froude number U/

√
gH (U is the tidal velocity amplitude, g is acceleration

due to gravity and H is the unperturbed depth) is too small, which indicates that
there is much less suspended sediment in water (see Fredsoe & Engelund 1975). Also,
Hjulstrom’s diagram (see e.g. Leeder 1982) suggests that for realistic values of the
near-bed velocities and particle sizes, the prevailing mechanisms of sediment transport
are the bed-load mechanisms.

The role of hydrodynamics is to provide the algorithm by which we compute the
tangential shear stress as functional of the deformation h, τ = τ[h]. We begin with a
tidal flow, u = (u(x, z, t) = u0(z, t), w(x, z, t) = 0) on 06 z6H . We perturb the bottom
with a small-amplitude zero mean deformation h and adiabatically (because changes
in h are so slow) calculate the corresponding deformations in the flow velocity u
and pressure p fields. Although complicated, there is nothing singular about this
calculation. We end up with τ = τ[h], namely with an expression for the shear stress
which depends on h and its x-derivatives. We then solve equation (1.2) for h as
a perturbation series in amplitude with the first terms given by expression (1.1).
The variations of A and B with time are chosen to keep the asymptotic expansion
uniformly valid in time. A, the envelope of the excited wave packet (whose width
∆k is proportional to the amplitude), and B are both slowly varying in x, namely
∂xA/A and ∂xB/B are of order A. The perturbation series for ∂tA and ∂tB are Taylor
series in A, B and the slow derivative ∂x. Simple arguments based on symmetry
considerations tell us which terms can and cannot be present. These are familiar
in the derivation of the class of ‘amplitude’, ‘Newell–Whitehead–Segel’, ‘complex
Ginzburg–Landau’ equations which are part of a vast literature (Newell, Passot &
Lega 1993; Cross & Hohenberg 1993) on the post-stability behaviour of pattern
forming systems. For example, in the equation for ∂tB, we seek those terms arising
from the time-averaged flux 〈q〉, which have no fast (∝ eikcx and higher harmonics)
x-dependence. The first candidate would be |A|2, but this is ruled out by symmetry
considerations as a constant-intensity sand wave packet cannot produce a right or left
net flux of sediment. The next available candidate is ∂x|A|2 which is allowed because,
from a modification of the previous argument, sand waves with varying intensity can
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Figure 3. The growth rate curves for parameter set (i) of figure 7 and different values of b. The
local minimum of the curve with b = 5/2 is Γ ≈ −0.15 (it corresponds to k ≈ 0.02).

indeed drive the circulation shown in figure 2. Dependence of 〈q〉 on B is ruled out
because a constant change of sand bed level cannot produce a net flux. Therefore, the
first term in 〈q〉 that depends on B is ∂xB (and therefore, the first term in ∂tB is ∂2

xB).
The sign is important, and we will remark on this later in more detail. In our analysis
it is positive, which means that long waves are damped. Therefore, the growth rate
Γ (k) as function of k for the linear stability of the state k = 0, u = (u0(z, t), 0) will
look like that shown in figure 3. In this case, a time-independent state can be reached
when B is of the same order as |A|2. The leading-order terms in the equation for ∂tA,
obtained as the x-derivative of the coefficient of eikcx in 〈q〉, are ∂Γ/∂λc(λ− λc)A, ∂2

xA
(with a positive coefficient reflecting the curvature of Γ (k) at k = kc), |A|2A and BA.
Since the instability is not a travelling wave, the left–right symmetry in not broken,
so no (group velocity) terms proportional to ∂xA appear.

The canonical equations we obtain are

ATm = σ(λc − λ)/λcA+ γAxx + c|A|2A+ ηAB,

BTm = βBxx + ξ|A|2xx,
and it is the goal of the following analysis to determine the coefficients. The main
point to be made, however, is that, independent of the details of the model, very
long-wave deformations B are driven by the gradients of sand wave intensities in the
time-averaged flux 〈q〉.

The outline of the paper is as follows. In § 2, we present the hydrodynamical
model and discuss the eddy viscosity parameterization and approximations that we
use. In § 3, we give the basic solution corresponding to the tide over a flat bottom
and perform the linear analysis of the perturbed system. We find the solutions
corresponding to the most excited mode and the zero mode, and discuss the growth
rate curve. Section 4 contains the nonlinear analysis of the system. We derive a set of
coupled evolution equations for the two functions of interest: the envelope of sand
waves and the amplitude of sand banks. The coefficients in the equations are defined
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through physical parameters of the system. Based on these equations we can predict
the characteristic time for sand bank formation as well as the heights of sand banks
and sand waves, which is done in § 5. We also discuss various scenarios and conclude
that predictions of our nonlinear model coincide reasonably well with observations.
Conclusions are presented in § 6.

2. Details of the model
Because we are dealing with a strongly turbulent motion, because the sediment

transport equation is empirical and because the coupling between the two involves
the prescription of the stress at the top of the molecular boundary layer, we have
to recognize that the model is largely phenomenological. This means that while
we choose the model to be consistent with the equations of fluid motion, it will
also contain certain parameters connected with the characterization of viscosity,
the sediment transport and the relation between bottom tangential stress and fluid
velocity. Their values are chosen to belong to a range which gives results consistent
with observations of sediment flux and sand wave fields in fairly shallow seas. But
they cannot be precisely determined. Therefore, the model should be robust in that its
predictions should not change qualitatively as the parameters in the phenomenological
equations are varied throughout their likely ranges. In this way, improvements in the
model prescription (a better characterization of viscosity or sediment flux) will not
qualitatively change the conclusions. In particular, we want to make sure that the
main prediction of this paper, the rate of generation of sand banks, is relatively
insensitive to model details. We now discuss three of the main components, i.e. a
characterization of the turbulent eddy viscosity which properly reflects changes due
to bed deformations, the hydrodynamics and the sediment transport.

2.1. Eddy viscosity

It is important to recognize that even when the sand bed is flat, the tidal flow is
highly turbulent. The Reynolds number based on molecular viscosity is enormous
(tidal velocity, U ≈ 1 m s−1, the depth H is of the order 50 m and molecular viscosity
νmol ≈ 2 × 10−6 m2 s−1, so Re ∼ 107), and the tidal solution is highly inflectional.
Therefore, the turbulence Reynolds stresses greatly increase momentum transport.
This feature is captured by using a turbulent eddy viscosity νt ∼ 10−3–10−2 m2 s−1 (see
e.g. Pedlosky 1987). The quantity νt characterizes the typical distance, δ =

√
2νt/Ω,

over which the (averaged) tidal flow changes. We will call δ the turbulent boundary
layer thickness. In shallow tidal seas, it has the same order of magnitude as the depth
H .

There are various ways to incorporate this idea in the hydrodynamical model. The
simplest phenomenological model assumes that νt is constant (see e.g. Hulscher 1996;
Maas & van Haren 1987). Indeed, for simple unidirectional or harmonic (tidal) flows
over a flat bed, the assumption that δ=const is not an unreasonable one. However,
the ‘amount of turbulence’ in the water flow can acquire a spatial dependence if the
bed is non-uniform and/or if the flow changes in the horizontal direction. Indeed,
an analysis based on a constant-viscosity model gives a growth rate curve Γ (k)
which is positive over a range 0 < k < k0, and at onset very long deformations are
preferentially amplified. This is not consistent with observations (e.g. Huntley et al.
1993) in which sand waves belonging to a range of finite wavelengths seem to be
preferred. The most obvious deficiency is the uniform characterization of the eddy
viscosity. The viscosity model which we choose in this work reflects the fact that the
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strength of the turbulent eddies in the turbulent boundary layer has small corrections
due to (i) deformations of the bed, and (ii) periodic time dependence of the tidal
motion. Effectively this means that νt(x, t) = ν0(1 + ν) with

ν(x, t) = hα1(k) + hxα2(k) u(h, t), (2.1)

where α1(k) and α2(k) are some functions of k whose shape we will discuss. This choice
is consistent with symmetries of the system (it is invariant under the transformation
x → −x and u → −u), and also it has a physical interpretation. The constant ν0

corresponds to the eddy viscosity associated with an unperturbed tidal motion over a
flat bed. The first term on the right-hand side of equation (2.1) is time independent and
reflects the part of the viscosity changes induced by the bed topography. The second
term results from the interaction of the flow with the bed profile and therefore its time
dependence is the same as the time dependence of the flow itself. It turns out that
the coefficient α1(k) plays a more important role in the long-wave behaviour of the
system (so that effectively we are introducing a depth-dependent turbulent viscosity).
Namely, if α1(k) is finite and negative for small values of k, then this provides a
mechanism for suppression of the ultra-long waves in the system. Physically α1 < 0
means that the eddy viscosity is slightly smaller over the crests of the sand waves than

it is in the troughs. Note that if h = ĥ cos kx, then the second term in expression (2.1)
is vanishingly small for small values of k and therefore does not play a significant
role in the damping of long waves.

Viscosity Model I. In order to relate coefficients α1,2 to the physical parameters of
the system, we constructed a simple example of a viscosity parameterization which,
when linearized about the perturbed tidal state, coincides with representation (2.1).
In this example, the eddy viscosity is a functional of the flow velocity. Our choice is
purely phenomenological but it is related to the mixing-length concept first introduced
by Prandtl (1932) (see also Soulsby 1990; Engelund 1970). As we show in § 2.2, it is
approximately consistent with the notion of a constant slip and a bottom shear stress
proportional to |u|u. We take

νt = c1Hunb, (2.2)

where c1 is a constant, and the near-bed velocity is unb = |u(z = d)|trunc, i.e. the absolute
value of the velocity measured at some level z = d close to the bed. Note that as
long as d is much smaller than the local depth, its concrete values do not change the
results qualitatively (taking different values of d is similar to redefining the constant
c1). In the present paper we took d = 0. The truncation procedure used in expression
(2.2) can be explained as follows. The turbulent boundary layer time evolution is
completely determined by the flow. In the case of periodic flows, it means that the
corresponding expression for the eddy viscosity cannot contain time harmonics higher
than the ones present in the flow. Therefore, we truncate the expression |u(z = d)|
and only keep as many harmonics as are present in the function u(z = d) itself. The
constant c1 is taken to give reasonable values for the turbulent viscosity (in particular,
they coincide with the values used in Hulscher 1996 and Pedlosky 1987). In the text
below we will refer to expression (2.2) as Model I. In the next section we give the
expressions for coefficients α1 and α2 in this case. It turns out that α1 < 0.

Viscosity Model II. Another example of formula (2.1) is obtained by taking both
coefficients α1,2 to be external constants of the system. The choice is not unreasonable
because, for Model I, α1 is almost constant and we find from later calculations that
the terms proportional to α2 contribute little to the outcome. It is useful, however, to
consider this model (called Model II) in order to show that our results do not depend
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strongly on magnitudes in the choice of viscosity parameterization. They do, as noted
above, depend on the sign of α1.

We would like to emphasize that the viscosity models used here can be refined in
a number of ways. For instance, a vertical dependence of νt can be included (see e.g.
Tennekes & Lumley 1972; Soulsby 1990). However, since the exact z-dependence of
the viscosity is unknown, such a choice is also phenomenological and in any event
will tend to a characterization akin to (2.1). The important thing, as we have stressed,
is to make sure that the main predictions are relatively insensitive to model details.

2.2. Hydrodynamic equations

The hydrodynamics of the problem are described by Navier–Stokes equations for the
velocity field u = (∂zΨ,−∂xΨ ) with the viscosity term containing νt and boundary
conditions at the surface and the bed. The scales are given by the natural parameters
of the system: U (the tidal velocity amplitude), Ω (the tidal frequency) and δ (the
turbulent boundary layer thickness, δ =

√
2ν0/Ω). The typical horizontal length

relevant for sand waves is much larger than the water depth, and therefore all
horizontal dependences are much slower than the vertical ones. This gives us a chance
to simplify the equations by neglecting the second x-derivatives in comparison with
the second z-derivatives (shallow water approximation). At the surface, we use the
so-called rigid lid approximation (see e.g. Bryan 1969; Phillips 1977; Pinardi, Rosati
& Pacanowski 1995) of zero tangential stress (Ψzz = 0) and zero normal velocity
(Ψx = 0). This is a matter of convenience rather than necessity. The first boundary
condition at the sand bed z = h(x) is the kinematic condition that a fluid particle on
the sand bed remains there, dt(z − h(x, t)) = −Ψx − Ψzhx = 0 (here we neglect the
time dependence of h). The second boundary condition specifies the tangential stress
at the sand bed. In the context of a z-independent turbulent viscosity model, we have
to recognize that the tangential bed stress, νt∂zu, is not zero but (see e.g. Parker 1976;
Maas & van Haren 1987) given by a quadratic function of the horizontal velocity. The
relevant dimensionless boundary condition is then Ψzz = SΨz , where the resistance
parameter, S , is introduced so that S 6= ∞ means that there is a finite slip in the
system (see Engelund 1970). The same bottom boundary condition was used in Maas
& van Haren (1987) where it was derived by linearization of

τ = νt∂zu = Cd|u|u, (2.3)

where Cd is the drag coefficient. The boundary condition we use is phenomenological.
It enables us to circumvent a detailed description of the flow profile within the Stokes
boundary layer (which is about 10 cm in our case), see also Bowden (1983). In the
present model, νt = c1unb and by linearizing the right-hand side of (2.3) about unb, we
can estimate the resistance parameter, S = δCd/(Hc1).

2.3. Sediment transport

The bottom profile is described according to a mass conservation law for sand, which
involves an empirical formula for the sediment flux, equation (1.2). In this equation,
only two main forces are taken into account which act on bed sediment grains. The
first term shows the scraping effect of the drag force, and the second one represents the
gravity component along the bed profile. In order to give some estimates and define
the morphological time scale, ∆T , we will write down the expression for sediment
flux in dimensional quantities, α′|τ|b(τ − λ′hx). Here τ is the volumetric bed shear
stress (measured in m2 s−2), and α′ is an empirical constant whose value reflects some
properties of the sand; α depends on the exponent, b (see Van Rijn 1993). For b = 1/2,
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α′ can be estimated as α′ = 8γ̃/(g(s− 1))[s2 m−1], where s is the sand density divided
by the water density and γ̃ is a number between 0.1 and 1. Then, the characteristic
morphological time scale can be found according to ∆T = δ2/(α′[τ]3/2), where [τ] is
the typical shear stress. For b = 1/2, it is possible to show that for the entire range
of physically relevant parameters of the system, ∆T � 1/Ω. Typically, ∆T ∼ 2 years
(see Komarova & Hulscher 2000) and 1/Ω ∼ 2 hours. For different values of the
exponent b, this qualitative result still holds. Therefore, we can neglect the changes in
sediment during one tidal period and use tidal averaging on the right-hand side of
equation (1.2).

Next, we consider the role of parameter λ = λ′/[τ] in the equation for sediment
transport. Its inverse measures the relative dragging force exerted by the tide in
comparison with gravity. λ′[m2 s−2] depends on the properties of the sediment and can
vary significantly. An attempt to express λ in terms of other parameters of the system
was made in Komarova & Hulscher (2000). Based on the work of Fredsoe (1974) and
Bagnold (1956), the following expression was derived: λ ≈ 3Θc0g(s−1)d/(2γ̃ tanφs[τ]),
where Θc0 = 0.047 is the critical Shields parameter, tanφs = 0.3 is the friction angle
(Van Rijn 1993; Dyer 1986), s = ρsand/ρwater = 2.65, [τ] = ν0U/δ with typical values
between 10−4 and 10−3 m2 s−2, and the grain size, d, varies approximately from 50 µm
to 2 mm. Large λ means that gravity plays an important role. Small λ corresponds to
stronger tides (λ is inversely proportional to the tidal strength, [τ]). We choose the
parameter λ to be the stress parameter of the system. The physical range of values of
λ is approximately between 101 and 5× 102.

Finally, we discuss the range of values for the exponent b in the sediment flux
expression; b measures how strongly the drag force depends on the bottom shear
stress (see e.g. Dyer 1986). Usually values between 1/2 and 5/2 are used (for example,
in Seminara & Tubino 1992, values b = 1/2 and b = 3/2 were taken). In Schielen
et al. (1993), values from b = 1 to b = 6 were investigated, and the result only
weakly changed with b. In all of the above papers, the sediment was treated as bed
load. Other authors associated different values of b with different mechanisms of
sediment transport (such as rolling, sliding, saltating or suspended load). Therefore,
it is important that the present analysis is not sensitive to changes in b. It can be seen
from figure 3 that the results only qualitatively (and weakly) depend on the choice of
b. In this work we will take b = 2.

2.4. Summary of the model

Now we are ready to present the dimensionless model where velocities are measured
in terms of U, distances (x, z and h) in terms of δ, hydrodynamical time, t, in terms
of 1/Ω and morphological time, Tm, in terms of ∆T . Let us define the parameter R
as R = 2U/(δΩ). The dimensionless bottom shear stress can be written as

τ = (1 + ν)Ψzz(z = h), (2.4)

and the system under consideration is

(1/R) (2∂t − ∂2
z )Ψzz = (ν/R)Ψzzzz −ΨzΨxzz +ΨxΨzzz, (2.5)

z = H/δ: Ψzz = 0, Ψx = 0, (2.6)

z = h: Ψzz − SΨz = 0, −Ψx = Ψzhx, (2.7)

∂h

∂Tm
= − ∂

∂x

〈|τb|b (τb − λhx)〉 . (2.8)
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Figure 4. The two components of the tidal solution for H/δ = 3.5, S = 15.

3. Linear analysis
3.1. Tidal solution

System (2.5–2.8) allows a solution corresponding to the unidirectional M2-tide over
a flat bed (the principal lunar semi-diurnal tide). Recall that we replace the effect of
turbulent eddies by a bulk eddy viscosity and assume our basic state to be an (average)
laminar tidal motion. This motion only takes place in the horizontal plane, i.e. Ψ is
a function of z and t only, and h = ν = 0. We do not assume any time-independent
currents so that the tidal velocity, u0, is

u0(z, t) = us(z) sin t+ uc(z) cos t. (3.1)

The analytical expression for u0 can be written in the form

u0 =
iH

2δ

cosh(1 + i)

(
H

δ
− z
)
− cosh(1 + i)

H

δ
− 1 + i

S
sinh(1 + i)

H

δ

H

δ

(
1 + i

S
− 1

1 + i

)
sinh(1 + i)

H

δ
+
H

δ
cosh(1 + i)

H

δ

eit + c.c., (3.2)

and the components us and uc are shown in figure 4(a, b). Note that when solving the
system for u0, one needs to apply a normalization condition so that the solution is
unique. The condition fixes the tidal strength,

δ

H

∫ H/δ

0

u0(z, t) dz = sin t, (3.3)

which means that the average tidal velocity (in dimensional units) looks like U sin (Ωt).

3.2. Linear analysis and the soft mode

Any state of the system can be characterized by the functions Ψ (x, z, t, Tm) and
h(x, Tm). We start by perturbing the basic-state solution, Ψ = Ψ0(z, t), h = 0 (where
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Ψ0z ≡ u0). Since the solutionΨ0 does not depend on x, we can expand the perturbation
in terms of plane waves eikx. The dependence on the slow time, Tm, can be also taken
as eiωTm . Let us introduce a small parameter, ε � 1. In the linear analysis, ε just
measures how small the perturbation is with respect to the basic solution. The precise
relation of ε with other parameters of the system will be defined later. The perturbed
solution is

Ψ (x, z, t) = Ψ0(z) + εh1

(
ei(kx+ωTm)Ψ1(z, t) + c.c.

)
, (3.4)

h = εh1e
i(kx+ωTm) + c.c., ν = εν1e

i(kx+ωTm) + c.c., (3.5)

where εh1 is the (real) constant amplitude of the perturbation. For simplicity of
notation we will avoid writing the k-dependence of Ψ1 explicitly. For the general
form (2.1), the correction to the turbulent viscosity, ν1, is given by ν1 = α1 + ikα2Ψ .
For Model I, the linearized viscosity response is conveniently expressed in terms of
the stream function, ν1 = ũ−2Ψ0zΨ1z , where we use the notation ũ ≡ √u2

s (0) + u2
c(0).

In the analysis below we used Model I. Calculations are very similar for the general
model (2.1). We linearize the problem around the tidal solution to obtain the following
system:

LkΨ1 = 0, (3.6)

with the linear operator acting on the Fourier mode corresponding to k,

Lk =
1

R
(2∂t − ∂2

z )∂
2
z − ∂4

zΨ0

(Rũ2)
[Ψ0z∂z · ]z=0 + ikΨ0z∂

2
z − ik∂3

zΨ0, (3.7)

where the dot means that the function Ψ1 must be inserted. The linearized boundary
conditions are

(∂2
z − S∂z)Ψ1 + ∂z(∂

2
z − S∂z)Ψ0|z=0 = 0, (3.8)

ikΨ1 + ik∂zΨ0|z=0 = 0, (3.9)

∂2
zΨ1|z=H/δ = 0, (3.10)

ikΨ1|z=H/δ = 0. (3.11)

Owing to our choice of the tidal amplitude, the total flow of water must be equal to
sin t:

δ

H

∫ H/δ

h

Ψ (x, z, t)z dz = sin t, (3.12)

where the overbar means averaging in the x-coordinate. Because of expression (3.3),
this condition is automatically true for all the harmonics of Ψ1 with k 6= 0. For k = 0,
we have an extra condition:

Ψ1|z=H/δ −Ψ1|z=0 = Ψ0z|z=0, k = 0 (3.13)

(this follows from expression (3.3)). In this analysis, we use a time-truncation procedure
in order to reduce partial differential equation (3.6) to a system of ordinary differential
equations (see De Swart & Zimmerman 1993; Hulscher et al. 1993; and Gerkema 1999
for justification of this method; in particular, in the recent work of Gerkema 1999, the
effects of such truncation were investigated explicitly for sand waves, the difference
between exact and truncated solutions was calculated, and it was demonstrated that
truncation did not introduce any qualitative changes in the behaviour). We will only
keep the first two time harmonics for every function of t, so for instance, Ψ1(t, z) =
iΨ1,0(z) +Ψ1,s(z) sin t+Ψ1,c(z) cos t. For k 6= 0, system (3.6)–(3.11) becomes a fourth-
order differential equation in z with four non-homogeneous boundary conditions.
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The linear operator is not singular, so a unique solution can always be found. For
k = 0, the situation is different. Conditions (3.9) and (3.11) do not exist anymore, and
instead of them there is condition (3.13). This means that solutions with k = 0 are
determined up to a constant (which is not a problem, because the stream function
only gives physically relevant quantities upon differentiation). Also one can see that
solutions of system (3.6)–(3.11) with k 6= 0 in the limit k → 0 satisfy equation (3.13),
i.e. a mean flow solution can be obtained as a limit of solutions with a finite k.

The sediment response (where we set b = 2) gives

D ≡ −ik〈Ψ 2
0zz(3Ψ1zz + (1/ũ2)Ψ0zΨ0zzΨ1z − ikλ+Ψ0zzz +Ψ0zz)〉z=0 − iω(k) = 0.

(3.14)

Because of the specific time dependence of Ψ0z , namely Ψ0z = us sin t + uc cos t, the
last two terms in the angular brackets are identically zero. It is also easy to show
that all the terms in equation (3.14) coming from the time averaging of the water
flow are real. Therefore, iω(k) is also real (i.e. there are no travelling waves). This
can be explained using a symmetry argument: because the perturbation is chosen to
be ∝ cos kx, there is no preferred direction in the system, and therefore all terms
associated with moving in the x-direction must be zero. We will use this fact to
introduce the following notation:

iω(k) ≡ Γ (k), (3.15)

where the growth rate, Γ , is a real function of k and is given in figure 3. The linear
analysis of problem (3.6)–(3.11) shows that the behaviour of the system qualitatively
depends on the parameter λ. We find that when the ratio of dragging force to gravity
(as measured by 1/λ) exceeds a certain value, 1/λc, a finite bandwidth of modes
about a wavenumber, kc, becomes unstable. Note that in the linear analysis, the
amplitude εh1 of the solution is undetermined. The flow response is proportional to
the amplitude of the bed perturbation, which is arbitrary.

Problem (3.6)–(3.11) contains a homogeneous differential equation and is only
driven through the (inhomogeneous) boundary conditions. If we define

Ψ̃ 1 = Ψ1 + a0 + a1z + a2z
2 + a3z

3, (3.16)

then constants aj , 06 j6 3, can be found such that the boundary conditions for Ψ̃
become homogeneous, whereas the differential equation acquires a right-hand side,F,

LkΨ̃ 1 =F. (3.17)

This formulation is more convenient for the weakly nonlinear analysis.
From equation (3.14) one can explicitly see the obvious result that Γ (k = 0) = 0,

the existence of a soft mode. The solution Ψ1 corresponding to the soft mode is
non-trivial. Its amplitude is determined by an arbitrary amplitude of the bottom
perturbation with k = 0. This solution corresponds to the flow response to the
uniform lift of the bottom, h. This mode is neutrally stable in the linear analysis, but
it plays an important role if we take nonlinearity into account. It is called the mean
flow (we will denote it as Ψmean) and participates in the nonlinear interaction through
coupling with the bandwidth of unstable modes. The whole effect of the mean flow
has been overlooked so far. We shall include it in the analysis below and show that it
can be responsible for sand bank formation. We emphasize that the mean flow mode
describes local mean elevations (depressions) of the bed; the global average elevation
is zero, which is consistent with (1.2).
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Figure 5. The coefficients α1,2 as functions of k. H = 45 m, ν0 = 0.006 m2 s−1, S = 5, and the dotted
line is the growth rate curve magnified by a factor of 200.

3.3. The role of viscosity parameterization

For the linear analysis described above, we used viscosity Model I and obtained the
growth rate curve given in figure 3. In this case, the coefficients α1,2 of formula (2.1)
are expressed in terms of the harmonics of the stream function:

α1 = ũ−2 (us∂zΨ1,s + uc∂zΨ1,c)|z=0, α2 = −2/(kũ2)∂zΨ1,0|z=0, (3.18)

and their dependence on k is presented in figure 5. This model leads to finite values
of kc, and 2π/kc has size similar to the typical wavelength of sand waves.

We also performed linear analyses for other forms of viscosity parameterization
(2.1). The results can be generalized in the following way.

(a) If α1> 0 for small values of k, the mechanism for damping very long waves is
absent, and in supercritical conditions, all wavelengths from some finite number up
to infinity are excited. The situation α1 > 0 corresponds to the eddy viscosity whose
time average is smaller in the troughs and larger over the crests of sand waves.

(b) If α1 is finite and negative for small values of k, the system chooses a finite
most excited wave number, and the ultra–long waves are damped. In this case, the
eddy viscosity is larger in the troughs than it is over the crests. Note that for Model
I, coefficient α1 (given by expression (3.18)) is finite and negative, see figure 5.

The explanation is as follows. Let us start with a constant-viscosity model, i.e.
α1 = α2 = 0. In this case, the mechanism we described in § 1.2 for the formation
of the circulating eddies which scrape the sand along the bed from trough to crest,
holds for all wavelengths. It weakens as k → 0 and indeed, near k = 0, the instability
growth rate Γ (k) is positive and proportional to k2. If the tidal strength is enough
to overcome gravity, the growth rate curve has a positive gain band for a range of
k, 0 < k < k0, i.e. all wavelengths starting from 2π/k0 and up to infinity are excited
(shorter waves are damped by the gravity term).

This is not what is observed. Sand waves seem to have a preferred wavelength
between 200 and 800 m and coexist with sand banks which are 2–10 km long (Huntley
et al. 1993). In other words, the power spectrum of the bed consists of wavelengths
typical for sand waves with some energy in a small range near k = 0. This is consistent
with the growth rate shown in figure 3 when one adds in the nonlinear mechanism
for driving long waves by short ones.

When one takes account of viscosity variations as in formula (2.1), and the coeffi-
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Figure 6. The linear growth rate curves for the parameter set as in figure 4; the dotted line
corresponds to viscosity Model I, the solid line to Model II with α1 = −4.1, α2 = 0. In both cases,
the critical wavelength is 528.8 m.

cient α1 is finite and negative for small values of k, there is a competing mechanism
for driving the circulating eddies of figure 2 which counteracts the sense of rotation.
It has a similar origin to the cells discussed in § 1.2 in that the interaction of tidal
direction and viscosity is asymmetric. What is very important is that for very small
wavenumbers it produces a sense of rotation which weakens the destabilizing cellular
motion sufficiently so that it no longer can overcome the stabilizing influence of
gravity. This makes Γ (k) negative for k near zero (see figure 3).

Finally, if α1 is finite and positive for small values of k, the vortices of figure 2
are enhanced for long waves. Therefore, such viscosity model does not provide a
wavelength selection mechanism.

What is encouraging is that these results are not very sensitive to the particular
form of eddy viscosity parameterization. It turns out that the behaviour is very similar
for Models I and II with α1 < 0. In fact, for the same set of physical parameters, it is
always possible to find values for α1,2 such that the critical wavelength coincides with
the one given by Model I. The coefficient α2 does not play a significant part because
the corresponding term in expression (2.1) is small for small k. In figure 6 we present
the growth rate curves, Γ (k), for Models I and II. The physical parameters are the
same in both cases. The biggest difference between the two functions Γ (k) is that the
curvature near k = 0 is larger for Model II than it is for Model I.

3.4. Summary of the preliminary results

Now we are ready to perform a nonlinear analysis of the system. Before we begin, we
would like to emphasize the features of the linear system essential for the nonlinear
theory to be developed.

The growth rate curve for the values of the control parameter slightly after
the bifurcation point has its absolute maximum separated from k = 0 by
a bandwidth of modes with negative values of the growth rate. The system
chooses a first excited mode with a finite wavelength.
The k-dependence of the growth rate near k = kc is locally quadratic.
The mode with k = 0 is neutrally stable.
The k-dependence of the growth rate near k = 0 is locally quadratic.
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The same holds for a number of systems considered by other authors. This includes
the generation of sand ripples (Blondeaux 1990), alternate bars in straight channels
(Komarova & Newell 1995) and sand dunes in channels (Fredsoe 1974).

4. Nonlinear analysis
The linear analysis above predicts the formation of sand waves. Very long waves

are linearly damped. Our goal is to explain the coexistence of sand waves and sand
banks, which have a much larger wavelength. In order to do this, we take into
account some effects of nonlinearity in the problem. We use a perturbative method
assuming that the system is not too far above the threshold, and separate the fast and
slow dynamics (see e.g. the review by Newell et al. 1993) to describe the growth and
interaction of sand waves and sand banks. The procedure of nonlinear analysis used
here is rather standard (see for instance Newell & Moloney 1992, where a weakly
nonlinear analysis for the Maxwell–Bloch system is developed, or Schielen et al. 1993,
where a system for a vertically averaged channel flow is considered). We will describe
the method in this section. The detailed calculations for each order are given in the
Appendix.

We suppose that the control parameter, λ, is only slightly smaller than its critical
value, i.e. |λ − λc| = λcε

2. We use this to define ε. The fastest growing mode has
wavelength kc (and corresponds to the sand waves), and the zero mode is neutrally
stable. We start with the following general double expansion of the solution (where
Ec ≡ ei(kcx+ωcTm)):

Ψ =

∞∑
n=0

∑
m6 n

εnEm
c Ψn(m)(X,T , z, t) + c.c., h =

∞∑
n=1

∑
m6 n

εnEm
c hn(m)(X,T ) + c.c.

(4.1)

Note that in order to include the finite bandwidth (of width proportional to ε) of
unstable modes, the coefficients of Em

c in this expansion are allowed to depend on slow
time and space variables, X = εx and T = (T1, T2, . . .) with T1 = εTm, T2 = ε2Tm, . . . .
Let us denote the solution of system (3.6)–(3.11) with k = kc as Ψc. We will write
down the first few terms of this expansion explicitly:

Ψ = 1
2
Ψ0(z, t) + εA(X,T )EcΨc(z, t) + ε2

(
1
2
Ψ2(0)(X,T , z, t)

+EcΨ2(1)(X,T , z, t) + E2
cΨ2(2)(X,T , z, t) + 1

2
B(X,T )Ψmean(z, t)

)
+ c.c.+ . . . ,

(4.2)

h = εA(X,T )Ec + ε2
(
h2(1)(X,T )Ec + h2(2)(X,T )E2

c + 1
2
B(X,T )

)
+ c.c.+ . . . .

(4.3)

The first term on the right-hand side of equation (4.2) is the basic-state solution
representing a tide over a flat bottom. The second term is the solution of the linear
problem corresponding to the fastest growth rate. The envelope A (in the previous
section we denoted it as h1) is allowed to vary slowly in time and space to incorporate
finite bandwidth effects. The next three terms on the right are second harmonics which
appear as a result of the nonlinearity. Their dependence on the slow variables will
be determined shortly. Finally, the term proportional to B on the right-hand side is
the solution of the linear problem for the k = ω = 0 mode, corresponding to the bed
distortion amplitude B. Note that the component of the h-expansion corresponding
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to ε2h2(0) can be taken to be zero if we impose the condition that the amplitude B
averaged over X is zero (sand mass conservation).

The goal is to find a system of partial differential equations describing the nonlinear
dynamics of the slow varying envelopes, A and B. This system will explain the
mechanism of generation of sand waves and tidal banks on the tidal background. In
order to find such a system, we will consider the equations at different orders of ε. At
certain orders, the system becomes over-determined and we will need to impose some
kind of solvability condition to make the equations self-consistent. This solvability
condition gives us asymptotic expansions for ∂A/∂Tm (= ε∂A/∂T1 + ε2∂A/∂T2 + . . .)
and ∂B/∂Tm which govern the slow dynamics of the system.

4.1. General consideration

We will call the mode proportional to εnEm
c the (nm)-mode. The corresponding bed

distortion component looks like εnhn(m)e
mi(kcx+ωcTm). Using expressions (4.2)–(4.3) in

system (2.5)–(2.8), we can write down the contributions at the (nm)-order as

Lk=mkcΨn(m) = Fnl, (4.4)

(∂2
z − S∂z)Ψn(m) + ∂z(∂

2
z − S∂z)Ψ0hn(m)|z=0 = Cn(m), (4.5)

imkcΨn(m) + imkc∂zΨ0hn(m)|z=0 = Dn(m), (4.6)

∂2
zΨn(m)|z=H/δ = 0, (4.7)

imkcΨn(m)|z=H/δ = 0, (4.8)

−imkc

〈
Ψ 2

0zz

((
3∂z +

1

ũ2
Ψ0zΨ0zz

)
∂zΨn(m) − imkcλc

)〉
z=0

− imωchn(m) = Gn(m), (4.9)

where Cn(m) and Dn(m) do not depend on z and contain information about the boundary
conditions related to the previous (< n) orders in ε, Fnl comes from the corresponding
nonlinear terms and Gn(m) reflects the effect of nonlinearities and slow variations.
Note that all the terms in equation (4.9) are functions of slow coordinates only. This
is because this equation comes from the sediment conservation law (2.8), where the
fast time dependence is eliminated by averaging over a tidal period, and all functions
are evaluated at the point z = h. For m = 0 modes, there is also a normalization
restriction, ∫ H/δ

0

∂zΨn(0) dz = γn, (4.10)

where γn are constants which come from previous harmonics. This latter condition
guarantees that the perturbation produces no net tidal motion.

Note that the system is over-determined, because five boundary conditions are
imposed on a fourth-order ordinary differential equation. The requirement of self-
consistency will enable us to find conditions on the unknown envelopes.

The general procedure of solving system (4.4)–(4.8) at each order (nm) is as follows.
First we rewrite equations (4.4)–(4.7) using the time-series truncation, thus obtaining
a system of three fourth-order partial differential equations in z for the unknown
functions Ψn(m),0, Ψn(m),s and Ψn(m),c (where Ψn(m) = Ψn(m),0 +Ψn(m),s sin t+Ψn(m),c cos t).
Note that at the stage (nm), we need to have obtained the necessary modes at
orders less that n. These modes are used to evaluate Fnl , Cn(m) and Dn(m). Then, we
numerically solve the resulting inhomogeneous boundary value problem using the
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so-called shooting to a fitting point method. Finally, we substitute the flow solution
into the sediment transport equation, (4.9).

Before we explicitly list the solvability conditions, we would like to give one example
of system (4.4)–(4.8). For the mode (11) it is given by equations (3.6)–(3.11), (3.14).
There, m = n = 1, h1(1) = 1, F1(1) = C1(1) = D1(1) = G1(1) = 0 and the solution is just
Ψc. The last equation defines the critical value of ωc (which is zero by the choice of
k = kc, λ = λc). The solution at order (11) reproduces the linear analysis of § 2.

For higher orders, the terms coming from nonlinear interactions and slow behaviour
become non-trivial. The solution in each order (nm) can be represented as a sum of
the solution of the corresponding homogeneous system and a particular solution of
the non-homogeneous system, i.e.

Ψn(m) = Ψ1(k = mkc)hn(m) +Ψnl
n(m), (4.11)

where the Ψ1(k = mkc) is the solution of system (3.6)–(3.11) with k = mkc, and the
Ψnl
n(m) part is driven by the nonlinearities and slow derivatives. We will substitute

solution (4.11) into equation (4.8) and make sure that the equation is satisfied. There
are three cases:

(a) m = 0: the solvability condition is

G = 0, (4.12)

and the amplitude hn(0) is undetermined. It means that at every order of ε we will get
a solution of the form

Ψn(0) = Ψmeanhn(0) +Ψnl
n(0). (4.13)

(b) m = 1: solution Ψ1(k = kc) ≡ Ψc makes the left-hand side of equation (4.8)
zero (by the definition of the ωc). The solvability condition is

−ikc

〈
Ψ 2

0zz

(
3∂z +

1

ũ2
Ψ0zΨ0zz

)
∂zΨ

nl
n(1)

〉
z=0

−Gn(1) = 0. (4.14)

The amplitude hn(1) remains undetermined and hn(1)Ψc is a solution of the system for
each n.

(c) m > 1: the solution hn(m)Ψ1(k = mkc) has the amplitude determined uniquely
by equation (4.9) (modulo the remarks in the end of this paper about sub- and
super-harmonics). There is no other solvability condition.

Without loss of generality, we can take hn(1) = 0 for all n > 1 and hn(0) = 0 for
all n > 2. The corresponding solutions are proportional to the eigenvectors which we
introduce at orders ε and ε2 with the amplitudes A and B respectively. The amplitudes
of those higher-order solutions can be included into the the envelopes A and B. By
introducing non-trivial corrections hn(1) and hn(0) we would just redefine A and B.

Note that the procedure described here is slightly different from the conventional
one (see e.g. Schielen et al. 1993). Normally, one has a singular linear operator and the
solvability condition is given by the Fredholm alternative theorem, which ensures that
one can solve for iterates. In our case, the linear operator (in the formulation used
here) is not singular (note the presence of the driving terms proportional to hn(m) in
equations (4.5)–(4.6)). System (4.4)–(4.8) always has a solution. However, the problem
is still overdetermined because of the conservation law for sand. Equation (4.9) itself
becomes the solvability condition for this system. It results in certain (nonlinear)
partial differential equations for the envelopes. However, if we remember that the
result of the linear hydrodynamical equations is nothing but an expression Ψ = Ψ [h],
i.e. the flow as a linear functional of the bed deformations, we can formally rewrite
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the problem at each order as a non-homogeneous equation Mh = R, where M is
a singular linear operator. Then the solvability conditions described above can be
derived from the corresponding Fredholm alternative theorem.

4.2. Results

We refer the reader to the Appendix for the details of the nonlinear analysis. In this
study, it is necessary to go to fourth order in ε to recover non-trivial dynamics of
the amplitude B. At each order, we find the corresponding components in expansions
(4.2)–(4.3) and a solvability condition for the envelopes, A and B. The results are

AT1
= BT1

= 0, (4.15)

AT2
= σ/λcA+ γ∂2

XA+ c|A|2A+ ηAB, (4.16)

BT2
= β∂2

XB + ξ∂2
X |A|2, (4.17)

where σ, γ, c, η, β and ξ are real constants.

4.3. Remarks

The nonlinear analysis was performed for both eddy viscosity Model I and Model II
(with α1 < 0 and α2 = 0). The resulting nonlinear system for the envelopes (4.15)–
(4.17) is qualitatively the same for both cases. The values of the coefficients have the
same order of magnitude and sign.

Let us examine system (4.15)–(4.17). Equation (4.15) tells us that the instability is a
pitchfork and not a Hopf bifurcation. There is no group velocity. Migration of sand
wave packets would require a unidirectional component in the tide or some other
influence that breaks the x→ −x symmetry.

Next, the coefficients in front of linear terms in system (4.16)–(4.17) can be obtained
from the growth rate curve as well as directly from equations in the corresponding
orders. Namely,

σ = λc

[
∂Γ

∂(−λ)
]
c

, (4.18)

γ = −1

2

[
∂2Γ

∂k2

]
c

, (4.19)

β = −1

2

[
∂2Γ

∂k2

]
0

, (4.20)

where the subscript c means ‘critical’ (λ = λc, k = kc) and the subscript 0 means
λ = λc, k = 0. The coefficients σ, γ and β are real.

The coefficients c, η and ξ are also real numbers. The corresponding analytical
expressions are not presented here because they contain dozens of terms. We just
point out that they are obtained by averaging (over a tidal period) algebraic functions
of modes Ψn(m)(z = 0) and their z-derivatives. These coefficients also directly depend
on kc and λc.

Finally, we can rewrite system (4.15)–(4.17) using more natural variables. To start,
recall that ∂Tm = ε∂T1

+ ε2∂T2
, which is equal to ε2∂T2

because of equations (4.15).
Next, we note that in the analysis above, we scaled all distances (horizontal and
vertical) with δ, the turbulent boundary layer thickness. It is far more appropriate
to scale horizontal distances with the wavelength of sand waves, L (which is much
larger than δ). Similarly, it is convenient to measure the vertical bed distortions in
terms of a typical sand wave height, l (which is smaller than δ). According to this,



Nonlinear dynamics of sand banks and sand waves 303

250

200

150

100

50

0
0.5 1.0 1.5 2.0 2.5

b

kc

Figure 7. The critical control parameter for different values of b. Stars correspond to (i) H = 30 m,
ν0 = 0.006 m2 s−1, S = 15, diamonds correspond to (ii) H = 45 m, ν0 = 0.009 m2 s−1, S = 12.

let us set A = εAδ/l, B = ε2Bδ/l and x̃ = xδ/L. Now we can incorporate all the
solvability conditions obtained in this section into a system of two partial differential
equations with constant coefficients:

ATm = σ(λc − λ)/λcA+ γAx̃x̃ + c|A|2A+ ηAB, (4.21)

BTm = βBx̃x̃ + ξ|A|2x̃x̃ (4.22)

(remember that in order to be supercritical, λ must be less than λc; hence σ in equation
(4.18) and the first term in the right-hand side of equation (4.21) are both positive).
In the rest of this paper we used the following rescaling coefficients: L = 800 m and
l = 2.5 m. Tm is measured in units of 2 years. Note that equation (4.22) is simply
a normal form for the sediment transport equation when the bed deformation is
approximately sinusoidal with flux −ξ∂x̃|A|2 − β∂x̃B.

5. Discussion and estimates
Here we will discuss the sensitivity of the weakly nonlinear stability analysis (system

(4.21)–(4.22)) to the choice of the physical parameters b, ν0, H , S and R since they
are either phenomenological (i.e. chosen on empirical grounds) or their range is
large. We follow this with a discussion of the coefficients σ, γ, c, η, β and ξ in
equations (4.21)–(4.22), their typical sizes and dependence on the physical parameters
(in particular, on S and H/δ). We will also comment on how the results depend
on the choice of the eddy viscosity model. Next, we investigate the predictions of
the equations themselves and present the main result, namely that sand banks are a
direct consequence of variations in sand wave intensity. We follow this with several
further remarks concerning standard properties of equations (4.21)–(4.22) and end
the section with a suggestion that when 1/λ is strongly supercritical, one can expect
period doubling to occur.

5.1. Physical parameters

First of all we will comment on the role played by the parameter b, the power law
in the sediment flux parameterization. It has been observed that, if the rest of the
physical parameters are fixed and only the power b changes, the predicted wavelength
of the sand waves stays the same, and only the critical value of the control parameter,
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λc, changes. In figure 7, we present some examples of b and the corresponding values
of the critical λ. The estimates are given for two sets of physical parameters: (i)
H = 30 m, ν0 = 0.006 m2 s−1, S = 15 and (ii) H = 45 m, ν0 = 0.009 m2 s−1, S = 12. The
critical wavelength for the systems (i) and (ii) are 894.9 and 636.1 m respectively. The
result that kc does not depend on the value of b, is shown in figure 3. There, we
plotted the growth rate curve for five values of b (parameter set (i)). For each value
of b, we used λ = 99%λc. It can be also observed that as 1/λ is slightly supercritical,
the band width of modes with a positive growth rate does not depend on the concrete
value of b (growth rate curves corresponding to different b cross zero at the same two
points). This means that b does not define the slow x-variation of the excited mode.
This is rather encouraging because formula (2.8) is purely empirical, and a strong
dependence on the value of b would throw the analysis into question. Because of the
weak dependence on b, we choose its value for analytical convenience. In particular,
we choose it so that the sediment flux has a Taylor series expansion about the basic
tidal solution. This is only possible if b is an even integer, and the only one that falls
into the physically realistic range is b = 2.

The last remark concerning the choice of b is related to the corresponding values
of the critical control parameter. The fact that λc increases (linearly) with b (see figure
7) is not surprising. The bigger the exponent in the sediment flux expression is, the
more strongly the flux depends on the shear stress and the harder it becomes for the
gravity force to balance the ‘scraping’ term. Since λ is an empirical parameter whose
meaning is only known to us qualitatively, we will choose it to be somewhat below
its calculated critical value to ensure the excitation of sand waves.

The rest of parameters involved in the system are chosen to fall in a physically
realistic range. Typical values for U are about 1 m s−1, the tidal frequency is Ω =
1.4 × 10−4 s−1, and the average eddy viscosity is of the order 10−3–10−2 m2 s−1 (see
e.g. Pedlosky 1987). This corresponds to values of c1 approximately between 10−4 and
10−3. The typical turbulent boundary layer thickness is then about 10 m. Sand waves
have been observed in shallow seas with the depth of about 20–45 m. This gives the
range for the dimensionless ratio H/δ of 2–4.5. The parameter R lies between 500
and 1000. In order to find estimates for the resistance parameter, S = δCd/(Hc1), we
use the range for the drag coefficient between approximately 10−3 and 10−2 (see e.g.
Maas & van Haren 1987; Bowden 1983; Schielen et al. 1993; Soulsby 1990). This
means that the order of magnitude for S is roughly 101.

5.2. Typical values for coefficients in the envelope equations

Here we will present the results for the coefficients in the envelope equations (4.21)–
(4.22). Only the dependence of the coefficients on S and H/δ is discussed. The third
dimensionless parameter present in system (2.5)–(2.8) is R, but it can be scaled out
by redefining x′ = xR and λ′ = λ/R. This is a consequence of the shallow-water
approximation we are using here. The parameter R was kept in equation (2.5) in
order to follow the more traditional notation. In what follows we will fix R = 700
which is a typical value. Model I for eddy viscosity is discussed here. See the next
subsection for results for Model II.

σ: this coefficient gives the linear growth rate of the sand waves per unit change
of λ. Its typical values are 10−1–1 (see figure 8a). Physically this means that the system
is not very sensitive to slight changes of the control parameter, λ. This is a reasonable
result. It means that even if λ differs from its critical value by 40–50%, the product
σ(λc − λ)/λc is still a small number, i.e. we are still in a weakly nonlinear regime. The
coefficient σ increases both with S and H/δ.
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γ: a typical value of the diffusion coefficient is 10−2 (see figure 8b). γ is always
positive, because the growth rate curve has a maximum at k = kc, and γ is proportional
to its curvature there. The coefficient γ defines the scale on which the sand waves
amplitude, A, varies. γ grows with S .

β: at k = 0, the curvature of the growth rate relation is larger than it is at k = kc
(see figure 3). This means that the diffusion coefficient in the B-equation is relatively
large (about 20 times larger than the diffusion coefficient for the sand wave equation,
γ). The typical range of β is 10−1–1, and β increases both with S and H/δ (see
figure 8c). Note that this coefficient is positive because k = 0 is a local maximum.
This is a consequence of the turbulent viscosity model we are using. If instead of
parameterization (2.1) with α1 < 0 we employed the usual νt = const model, the
curvature of the growth rate curve near k = 0 would have had a different sign. It was
found in Hulscher (1996) that the super-long waves (modes with very small values of
k) are always excited if the eddy viscosity is assumed to be a constant. Note that in
this case the equation for B would look like

BTm = β1Bxx + β2Bxxxx + ξ′|A|2xx + other nonlinearities, (5.1)

with β1 < 0, β2 < 0 (this follows from the k-dependence of the growth rate near
zero). The sign of coefficient ξ′ will be discussed a little later. We have examined
other modifications of dependence (2.2). For instance, higher powers of |unb| (e.g. a
quadratic dependence on the near-bed velocity) would lead to an even sharper slope
of the growth rate curve near zero.

η: this is the coefficient of the nonlinear coupling term. It usually takes values
of order one and changes sign depending on S (figure 8d). The term ηAB tells one
by how much the growth rate of sand waves changes if they are superimposed on
a large-scale bed distortion (B). A positive (negative) sign of η suggests that sand
waves on the top of a sand bank will have a larger (smaller) growth rate than sand
waves with a zero mean. The sign of η depends on the viscosity parameterization. We
will examine two viscosity models.

If the simpler model, νt = const, is employed, the value of η is always positive. To
see this, let us fix some 1/λ slightly greater than 1/λc and solve the linear problem
with this value of 1/λ in two cases: (i) the unperturbed depth is H , and (ii) the
unperturbed depth is smaller than H . The resulting growth rates can be compared,
and it turns out that for the smaller depth, the growth rate is always larger. This
is easy to understand. When water becomes shallower, the currents must become
stronger, and therefore the critical value of 1/λ decreases. Thus for a fixed 1/λ and
shallower water, the value 1/λ− 1/λc is larger and the growth rate is larger too.

Next, let us turn to a viscosity model of type (2.1) with α1 < 0. The situation is now
more complicated. If the depth becomes smaller, two things happen: (i) the currents
have a tendency to become stronger, just as in the previous case, (ii) the near-bed
currents are weakened because the viscosity changes. This can be understood in the
following way: on the top of a sand wave crest, the depth (H) becomes smaller, but
also the viscosity (and therefore, the turbulent boundary layer thickness, δ) decreases.
Therefore, the effective depth (the ratioH/δ) can either decrease or increase depending
on where we are in the parameter space. This means that the resulting growth rate
can increase or decrease respectively. Thus the coefficient η can be either positive or
negative.

ξ: this coefficient is responsible for the generation of sand banks as a result of
the sand-wave amplitude gradients. It tells us that whenever there is a non-trivial
curvature in the sand-wave amplitude, the driving term, ξ|A|2xx, becomes non-zero
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Figure 8. Calculated values for coefficients. Dotted line corresponds to S = 15, dash-dot to
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and forces B to grow even if it was identically zero initially. This coefficient was found
to be non-trivial for all the values of H/δ and S we have experimented with. For the
parameter range under investigation it is always positive and is of the same order as
the dispersion coefficient, β. This is an important result: the nonlinear driving term
for sand banks is big enough to compete with the linear damping. The coefficient ξ
grows with S and H/δ (figure 8e). It appears as a result of the interaction of modes

Ψc and Ψ2(1) as well as the mode Ψ
|A|2X
3(0) (see the Appendix). The fact that the term

|A|2xx is present in the B-equation can be explained as follows. If the sand-wave
amplitude changes with x, on a larger scale (the scale of the tidal waves) it looks as
if the roughness of the bottom changes with the horizontal coordinate. Therefore, the
interaction between the tide and the bottom is different for the patches of large A
and patches of small A. This results in local changes of the bed level, which take
place on exactly the same x-scale as the changes in A occur. This fact is reflected in
the generating term ξ|A|2xx in the equation for sand banks.

It is possible to explain why the coefficient ξ is positive. Let us assume that the
amplitude of sand waves, A, changes in x over distances much larger than the
wavelength of the sand waves. Then the bed looks like a wave on which a slow
modulation is imposed (see figure 9). The time-independent flow response consists of
(i) vortices created by the sand waves (of horizontal size 2π/kc) and (ii) larger (in
horizontal dimension) vortices which are the flow reaction to the slow deformation
of the sand-wave amplitude. The competition between the near-bed residual flow
corresponding to long bed waves (flow (ii)) on one hand, and gravity on the other
hand results in the scale deformations of the mean bed level. The direction of the net
sediment flux is then determined by the behaviour of the growth rate curve (figure 3)
near k = 0. In our model, Γ (k) < 0 for small k, which corresponds to the sediment
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Figure 9. The direction of the net sediment flux when the sand wave amplitude is modulated.

flux in the direction from maxima to minima of the function |A|2 (see figure 9). Since
the mean bed level must be zero, the local depth increases in the spots where the
sand waves are the largest. This proves that the generation of B takes place in such
a way that the smallest sand waves are associated with elevations in the sand bed.

c: this is the coefficient responsible for nonlinear saturation of sand wave growth.
It was found that its sign depends on position in the physical parameter space.
The (S,H/δ)-plane is separated into two regions, where c is negative and positive
respectively (figure 8f). The latter situation only occurs for larger values of S .

If there are no sand banks, the nonlinear saturation can only occur because of
the term c|A|2A. However, the mean level distortion contributes into the equation
for the sand-wave dynamics. Let us set BTm = 0 (a steady state) and estimate the
value of B from the right-hand side of equation (4.22), i.e. B = −ξ/β|A|2. Then, this
expression can be substituted into equation (4.21) to give a contribution to the term
|A|2A. Let us call the new coefficient in front of this term c̃, so that

c̃ = c− ηξ/β. (5.2)

It is the coefficient c̃ which is important for the nonlinear saturation of the sand-wave
growth. It was found that there is a large portion of the parameter space where
the coefficient c̃ is negative. This means that sand waves are saturated at the third
order by means of a cubic nonlinearity. However, in the domains where c̃ is positive,
saturation does not occur. In this case, one might try and go up to the fifth order,
because the nonlinear saturation could be realized by the term |A|4A. However, the
saturating amplitudes may be so large as to call the whole weakly nonlinear analysis
into question.

We have discussed all the terms present in the equations for A and B up to the
fourth order. Terms such as Ax, |A|2x etc. are not possible because they break the
symmetry of the problem (they have a preferred direction, i.e. change sign when
x→ −x).

All the data in figure 8 correspond to sand waves whose wavelengths range from
about 800 m to 1200 m. Regular sand features of this size have been observed on
certain North American coast lines (J. Restrepo 1998, personal communication).
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However, wavelengths observed in the North sea fall between approximately 200 m
and 800 m (Huntley et al. 1993). For this range of wavelengths, we can calculate all
the coefficients (σ, γ, η, β, ξ) except for the coefficient c. The reason for this is the
following. The higher the wavenumber is, the harder it is to solve the Navier–Stokes
equations numerically. We did not have any problems with the code for a large interval
of values of kc (which corresponded to wavelengths from about 700 m and higher).
However, for shorter waves, a problem was encountered when we needed to solve for
modes with k = 2kc, which was a necessary step when calculating the coefficient c.
In order to calculate the coefficient c for shorter sand waves, the present numerical
scheme would have to be upgraded. All the other coefficients, including ξ and β which
are most important for our analysis, can be calculated for all wavelengths. Here we
present the resulting coefficients for the case of shorter sand waves (corresponding to
H/δ = 4.2 and S = 12). The critical wavelength turns out to be 500 m which is a
typical value for the North Sea. We have

σ = 1.3, γ = 6× 10−3, η = −0.76, β = 0.29, ξ = 0.41. (5.3)

One can see that the coefficients have the same order of magnitude as in figure 8.
We do not expect any qualitative changes in the nonlinear behaviour for sand waves
with smaller wavelength. Most importantly, the size of coefficients β and ξ and their
ratio for sand waves of all sizes have similar values to what we see in figure 8.

5.3. Sensitivity to the choice of viscosity model

The numerical results presented in the previous subsection were obtained for viscosity
parameterization I. We have also performed the nonlinear analysis for Model II with
α1 < 0, α2 = 0. It turns out that the numerical values of the coefficients only slightly
differ from the ones presented in figure 8. To illustrate this, let us consider the set of
parameters H/δ = 3.5 and S = 15. It turns out that the values α1 = −13, α2 = 0 in
expression (2.1) give the same critical wavelength as predicted by Model I, namely
801 m. The coefficients in the amplitude equations for the two models compare as
follows:

Model λc σ γ η β ξ
I 176.0 1.0 0.025 0.30 0.48 0.60
II 188.1 1.38 0.025 0.69 1.22 1.42

Another example we present here corresponds to parameters H/δ = 2.5 and S = 10.
Again, the values α1 = −8, α2 = 0 for Model II were chosen to give the same
wavelength as in Model I. We obtained the following coefficients:

Model λc σ γ η β ξ
I 114.6 0.32 0.020 0.01 0.22 0.22
II 124.9 0.34 0.020 0.30 0.34 0.38

One can see that the coefficients have the same sign and order of magnitude. A
general trend is that the values of β and ξ of the equation for sand-bank amplitude
are slightly larger for Model II. This is a consequence of the fact that the growth
rate curve for this model is steeper near k = 0 than it is for Model I. The ratio ξ/β
for Model II is about 5–10% larger. The conclusion is that the nonlinear excitation
mechanism is generic and does not change much when different versions of model
(2.1) are used.
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5.4. Predictions

Let us write down a typical system (4.21)–(4.22) using explicit numerical values of
the coefficients. For H/δ = 3.5 and S = 15, the critical wavelength of the sand waves
is 801 m and λc = 175.9. This means that as long as the control parameter λ is less
than λc, sand waves are expected to grow. The nonlinear evolution is then described
by the equations

ATm = 1.0((λc − λ)/λc)A+ 0.025Ax̃x̃ − 0.52|A|2A+ 0.30AB, (5.4)

BTm = 0.48Bx̃x̃ + 0.60|A|2x̃x̃. (5.5)

We can make some estimates. The solution B can be found from the balance on the
right-hand side of equation (5.5), i.e. B ≈ −1.25|A|2. Then, we plug this expression
into equation (5.4) which yields c̃ ≈ −0.9 < 0. Next, the amplitude of sand waves
can be determined from the balance of terms on the right-hand side of equation (5.4)
and is A ≈√(λ− λc)/(0.9λc). The dimensional height of sand waves (sand banks) is
given by 2lA (lB), where l = 2.5 m. For example, in order for sand waves to grow up
to 1 m, the difference between λ and λc must be about 6, which is about 3% of the
magnitude of λc. If λ is less than its critical value by about 14%, then the sand waves
will grow up to 2 m etc. The corresponding sand-bank height can be also calculated.
The results are summarized in figure 10, where we used the following rough estimates:
A =

√
σ(λc − λ)/(λcc̃) for sand-wave height and B = ξA2/β for sand-bank height.

These estimates reproduce correctly typical sizes of sand patterns observed in nature
(see e.g. Rubin & McCulloch 1980; Wilkens 1997; and figure 12 below).

What is significant is that even though λ − λc might be of the same order of
magnitude as λc itself (which means that ε is not small), expansion (4.2) still holds.
In the previous section, in order to make the procedure of the nonlinear analysis as
clear as possible, we considered different orders of ε. However, rigorously speaking,
the expansion itself was made not in ε, but rather in Aε. This means that for the
expansion to be valid, it is not ε, but εA which must be a small number. For instance,
for waves of 5.4 m height, εA is still only about 0.2 and ε2B is small as well.

We can make some predictions concerning the dynamics of sand waves and sand
banks. It is very interesting that the growth rate of sand banks turns out to be of the
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(a) Flat bed

(b) Linear growth of sand waves

(c) Non-uniform growth

(d) Generation of sand banks

Figure 11. Predicted long-scale bed dynamics.

same order of magnitude as the growth rate of sand waves. To see that, let us first
calculate the typical time for the growth of sand waves, ∆Tsw , using equation (5.4).
If (λ− λc)/λc = 0.25, then the growth rate of sand waves, Γsw = σ(λ− λc)/λc = 0.25,
and using ∆T = 2 years, we obtain for sand waves that ∆Tsw = ∆T/Γsw = 7.7 years
which coincides with most field observations. We proceed by using equation (5.5) to
find the typical time for the sand-bank generation, ∆Tsb. The driving term, |A|2x̃x̃, can
be estimated to give a rough idea about the growth of sand banks. Let us assume the
sand-wave amplitude to be 5 m, and the size of the sand bank 7 km. Then it is easy
to show that it takes about ∆Tsb = 10 years for a sand-bank height to increase by
1 m. This time interval is longer if the sand-wave height is smaller and the horizontal
dimension of the sand bank is larger.

In Hulscher (1996), it was shown that a typical time for the linear growth of sand
banks was of the order of 200 years. The linear mechanism responsible for their
generation was found to rely on horizontal currents rather than on vertical ones (it
was shown by Hulscher et al. (1993) that the linear generation of sand banks can be
described by a vertically averaged two-dimensional model). The present work does
not include this mechanism simply because it does not take into account the second
horizontal dimension. In the model we consider, sand banks are strongly damped in
the linear problem. However, as follows from the nonlinear analysis, the generation
through equation (5.5) takes place on a faster time scale than the linear generation
of Hulscher (1996).

The predicted long-scale behaviour of the bed is illustrated in figure 11. If the
currents are strong enough, a flat bed is unstable, and sand waves are linearly
generated (figure 11a, b). If their amplitude varies in space (that could for instance
happen if the properties of sand are slightly different in different patches of the bed),
then the mean level of the bed changes (figure 11c, d). The signs of coefficients in
equations (4.21)–(4.22) are such that the mean level decreases where the local sand-
wave amplitude is larger and increases where sand waves are smaller. As a result,
smaller sand waves are placed on the tops of the generated sand banks, and larger
ones are in the valleys. This coincides with observations. In figure 1, sand waves are
seen in the troughs of sand banks (note that sand banks are rotated with respect to the
tide; this is a result of the Coriolis force and can be captured by a three-dimensional
model). Also, the result of figure 11(d) is in agreement with observations of Wilkens
(1997), who analysed some existing field data and found (see figure 12) that the height
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Figure 13. Nonlinear residual flow and bed shape.

of the sand waves grows with the local depth. This indicates that the present model
leads to a qualitatively correct nonlinear behaviour of the system.

5.5. Nonlinear flow response and bed shape

The water flow adjusts to the sand-wave bed distortion. The response consists of modes

AΨ1e
ikcx, A2Ψ2(2)e

2ikcx, AXΨ2(1)e
ikcx, ABΨAB

3(1)e
ikcx, |A|2AΨ |A|2A3(1) eikcx etc., see equation (4.2).

All these functions contain time-independent harmonics, and therefore contribute to
the initial linear cells corresponding to k = kc. An example of such nonlinear cells
is shown in figure 13. The nonlinear shape of the bed (equation (4.3)) now also
contains higher harmonics and is (locally) similar to the shape predicted by Vittori &
Blondeaux (1990) for sand ripples (see figure 13). The main difference is that in our
analysis, both the mean level (B) and the sand-wave amplitude (A) are allowed to
vary slowly in space.

Let us next consider the flow reaction to the long-wave B-component of the bottom
elevation. If B is X-independent, then the flow correction will look like BΨmean and
have no time-independent component. This is clear from symmetry reasoning. If a
time-independent component had an infinite wavelength (i.e. was proportional to
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ei0kc), then the flow would have a unidirectional component, which is not allowed
by the symmetries of the problem. Therefore, the flow reaction changes its direction
with the tide. Now, if B changes slowly in space, then a time-independent component
must appear, because it was proven by the linear analysis that the flow reaction to a
non-uniform perturbation contains a residual flow. This manifests itself in the mode
BXΨ

BX
3(0) (see the Appendix), which only has a time-independent component and makes

up for the mode BΨmean not containing it. This residual component has a magnitude
about 10 times larger than the magnitude of the initial residual current, AΨ1. This is
a direct consequence of the viscosity parameterization. As a result, the coefficient β
in the amplitude equations is positive and large in comparison with γ.

Similar behaviour is observed when a long-wave modulation is superimposed
on some shorter waves. If A were constant in X, the only large-scale nonlinear flow
response would be the mode |A|2Ψ2(0). This flow has no time-independent components
for symmetry reasons. Now, if A is allowed to vary slowly in space, then the flow

will react by producing the harmonic |A|2XΨ |A|
2
X

3(0) which contains a time-independent

component. Again, it is directed downhill with respect to the gradients of |A|2 and is
rather strong. This results in the fact that the coefficient ξ is positive and of the same
order as β.

5.6. Further remarks

Here we will mention some general properties of system (4.21)–(4.22). First, we note
that in order to satisfy the requirement that the total amount of sand cannot change,
we need to complete the system (4.21)–(4.22) with the condition

B̄ = 0, (5.6)

where the bar denotes averaging in space. From equation (5.6) one can immediately see
that if |A|2x̃x̃ = 0, thenB satisfies a diffusion equation. If we are interested in stationary
solutions, there are two possibilities: (A,B) = (0, Cx̃), where C is some constant, and
(A,B) = (A, 0). In the latter case, the stationary solution for the envelope A is
A = GeiKx̃ with constants G and K satisfying σ(λc − λ)/λc − γK2 + cG2 = 0. This
corresponds to sand waves with a constant amplitude and the wavenumber in the
neighbourhood of kc. One can perturb this solution by adding ρeikl+ift + c.c. to the
amplitude G and iθeikl+ift + c.c. to the phase, iKx̃. Linear stability analysis shows
that there are regimes where such a solution is stable for a finite bandwidth of
wavenumbers K . The necessary condition for the existence of stable solutions of the
form A = GeiKx̃, B = 0 is simply c̃6 0. If this condition is satisfied, the stability
criterion is (K/G)26 |c̃|/(2γ) (this is analogous to the Eckhaus boundary).

Next, we consider the case when |A|2 varies in space. B cannot stay trivial anymore
but is forced to change in time and space to satisfy equation (4.22). A simple non-
trivial stationary solution of system (4.21)–(4.22) that satisfies condition (5.6) is

(A,B), B = −(ξ/β)(|A|2 − ¯|A|2). (5.7)

Note that solution (5.7) can be realized as a stationary state beginning from a B = 0
initial condition, because the gradient of |A|2 serves as a driving force for B. Plugging
this expression for B into equation (2.5), we obtain a modified stationary equation
for A:

0 = [σ(λs − λ)/λc − µ ¯|A|2 + γ∂x̃x̃ + c̃|A|2]A, (5.8)

where µ = ηξ/β. As one can see, this expression resembles the right-hand side of the
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well-known Ginsburg–Landau equation (GLE) with real coefficients. Solutions of the
GLE relevant to patterns can be found in Cross & Hohenberg (1993).

Now we will concentrate on the situation when the values of A and B are close
to the solution (A,B) = (0, Cx̃) as the initial condition. This solution represents a
uniform slope with no sand waves and is unstable to perturbations of A. Even a
very small deviation of A from zero will lead to a very large positive contribution
to the growth rate (through the last term of equation (4.21)), if |x̃| is large enough
and x̃ has the right sign. For η > 0 (η < 0), sand waves appear in the shallow (deep)
part of the bed. On the other hand, for B smaller (larger) than some constant, all
perturbations of A will decay. This will lead to the following situation: where the
water is deep (shallow), the bottom is flat. Towards shallower (deeper) waters, there
will be some sand waves, their amplitudes growing towards the shallower (deeper)
ocean. Of course, changes in A will contribute in equation (4.22) and change the
slope, B. An approximate stationary solution for A corresponding to B = Cx̃ (let us
assume C > 0) can be found, namely

A = ±√a0 + a1x̃, (5.9)

where a0 = −σ(λc − λ)/(λcc) and a1 = −ηC/c (this can be obtained by substituting
expression (5.9) into equation (4.21) and ignoring the diffusion term). Note that
solution (5.9) becomes exact in the limit |x̃| → ∞. It is likely that for the situation of
a uniform slope as the initial condition, the resulting solution for A will look like
expression (5.9) in the shallow (deep) part of the sea for η > 0 (η < 0), andA = 0 for
large negative (positive) values of x̃. Some interesting front dynamics can be expected
where the two parts of the solution ‘meet’.

In general, the stationary solution for B can be written as B = −ξ/β(|A|2− ¯|A|2)+
Cx̃. Then A satisfies equation

[σ(λc − λ)/(λcc)− µ ¯|A|2 + γ∂2
x̃ + c̃|A|2 + ηCx̃]A = 0, (5.10)

which can be transformed to the Painlevé equation of the second kind. Appropriate
solutions of this equation and their connection formulae can be found, for instance,
in Fokas & Its (1993) and Flaschka & Newell (1980). We will not discuss them here.

5.7. Wavelength doubling

Finally, we would like to mention an interesting scenario which takes place when 1/λ
is strongly supercritical. If one looks at the growth-rate dependence on k for different
values of λ, it is easy to notice that the larger the difference |1/λ − 1/λc|, the wider
the band of excited modes centring at k = kc. As 1/λ increases, there will be a point
λ = λ1/2 (λ = λ2) when the mode with k = kc/2 (k = 2kc) becomes excited. Let us
for instance consider the former case. The subharmonic mode with k = kc/2 can
nonlinearly (quadratically) couple with the most excited (k = kc) mode. Let us denote
the amplitude of the mode with k = kc/2 as A1/2. Then the coupling of modes A
and A1/2 can be illustrated by the following system of equations:

At = σ((λc − λ)/λc)A+ c1A2
1/2, (5.11)

(A1/2)t = σ1/2((λ1/2 − λ)/λ1/2)A1/2 + c2AA∗1/2, (5.12)

where the star means the complex conjugate and σ1/2 = λ1/2∂Γ/∂(−λ) estimated at
λ = λ1/2. Here we omitted all gradients and higher-order nonlinearities. Note that
such nonlinear coupling is only possible because the time dependence of the sand-
wave modes contains no travelling waves, i.e. the critical mode does not depend on
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the fast time (obviously, Γc = 0). If it did, we would require the frequency of kc to
be twice that associated with kc/2 (or close to it). From equation (5.12) one can see
that as long as σ1/2(λ1/2 − λ)/λ1/2 + c2ReA > 0, the mode with k = kc/2 will grow.
Since A is a complex function, condition λ < λ1/2 is sufficient for the mode A1/2

to grow, because ReA can be always adjusted by choosing the appropriate phase of
the complex envelope A. Moreover, A1/2 can even grow subcritically (if it is not too
strongly linearly damped).

This kind of an instability can be seen from the geometry of the flow. Let us
assume that modes with k = kc and k = kc/2 are superimposed. First we make a
further assumption that the relative phase shift of the two modes is zero, i.e. the
resulting picture is such that every other crest of sand waves is slightly smaller. Then,
the residual flow will consist of two superimposed sequences of vortices (with periods
of 2π/kc and 4π/kc). The flow response generated by the bed mode A1/2e

ikc/2x will
enhance the flow of those initial vortices which are directed towards the crests of
the bigger bumps, and weaken the initial vortices adjacent to the smaller bumps.
Therefore, the bigger bumps will grow and the smaller ones will be slowly washed
out. In the end, the mode with k = kc/2 will prevail and a wavelength doubling will
take place. In a more general situation, when initially modes with k = kc and k = kc/2
are superimposed and shifted in phase, the resulting flow will act in such a way that
the sand waves with amplitude A will gradually move and eventually their crests will
coincide with the crests of the modeA1/2. This will bring us to the situation described
before. The drifting of the initial sand wave towards the crests of mode k = kc/2 is
exactly what was meant by the complex mode A choosing the appropriate phase to
enhance the growth of the mode A1/2.

Finally, for the mode with k = 2kc, the equations will look exactly like equations
(5.11)–(5.12), except that the role of the mode A1/2 will be played by mode A, and
the mode A will be replaced by the mode with k = 2kc. As a result of the nonlinear
interaction, the mode A will win over the mode with k = 2kc (in other words, the
shortening of the wavelength does not occur).

6. Conclusions
In this paper we have found a system of two partial differential envelope equations

that couples the amplitude of sand waves and the mean bed level dynamics. This
system predicts the generation of sand banks where the amplitude of sand waves
changes in space. The nonlinear mechanism found here is rather generic. For instance,
it has been shown that it does not depend on the particular form of the eddy viscosity
parameterization, as long as 〈νt〉 is smaller over crests of the bed distortion than it is
in troughs. We have also demonstrated that the nonlinear mechanism of sand-bank
formation is as strong or stronger than the linear mechanism described in Hulscher
(1996).

The typical horizontal scale of sand banks is defined by the characteristic distance
on which sand waves change. This in turn can depend on several things, e.g. (i) how
supercritical the system is (in other words, how large the band width of excited modes
is), and (ii) some external reasons. The latter means that parameters such as the tidal
strength, the sand roughness, the local depth etc., are not constants. In real seas they
vary from place to place. Consequently, the control parameter, λ, can be different in
different patches of the bed, and the sand-wave behaviour (for instance, the growth
rate) can have a horizontal structure. According to equations (4.21)–(4.22), this will
lead to the generation of sand banks.
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The methods used for the nonlinear analysis presented in this paper can easily be
applied to other physical situations. For instance, one can perform a similar analysis
for a system describing sand bed dynamics under sea waves ebbing and flowing on
a shore line. It was predicted by Blondeaux (1990) that the linear instability leads
to the generation of periodic features whose wavelength is similar to the observed
wavelength of sand ripples. The symmetries of the latter problem are exactly the same
as in the present problem. One difference is the ratio H/δ, which is much larger in
the case of ripples than it is in the case of sand waves. Another difference is the
appropriate viscosity model (it is an eddy viscosity parameterization in our case and
the molecular water viscosity in the case of ripples). Despite these two differences, the
nonlinear procedure is analogous to the one described in this paper. The resulting
equations are expected to look similar to equations (5.4)–(5.5) except that A will
describe the amplitude of sand ripples and B the megaripples, which can be treated
as a varying mean bed level. We expect that the term ηAB will disappear in case of
sand ripples. Indeed, since the depth in this problem can be though to be infinite, it
is unlikely that the mean depth level changes can influence the growth rate of sand
ripples. This will be a generalization of the results of Vittori & Blondeaux (1990),
where the nonlinear analysis was performed for sand ripple dynamics, but neither
spatial gradients of the sand ripple envelope nor the mean flow mode were taken into
account.

One problem with the analysis described in this paper is that it requires very lengthy
calculations. All the terms which appear in the resulting envelope equations can be
found just by looking at symmetries of the problem, so the most time-consuming part
is calculating the numerical values of the coefficients in these equations. In order to do
that one has to (numerically) solve a number of systems of inhomogeneous ordinary
differential equations with boundary conditions. The flow solution obtained is then
used to find all the terms in the sediment equation. The result is that the predictions
based on the envelope equations are qualitatively reasonable and estimates have the
correct order of magnitude.

It is characteristic for this problem that even though at each step one has to solve
a full hydrodynamical system, only a small part of the flow information is then used
for the sand evolution equation. Namely, one only needs derivatives of the stream
function evaluated at the bed (and not as functions of z). This suggests that there
might be an alternative way to tackle the problem of modelling the behaviour of a
sandy bed in tidal seas. Namely, one could try and avoid solving the Navier–Stokes
equation and, instead, write down an empirical (Swift–Hohenberg-like) equation for
the time evolution of the bed level, h. In other words, it might be possible to replace the
hydrodynamical system coupled with the sediment conservation law, equations (2.5)–
(2.8), with one equation describing the time behaviour of the bottom profile. All the
hydrodynamical processes can be effectively included in the parameters (coefficients)
of this phenomenological equation. Such a model would be expected to grasp all
the important features of the bed dynamics (the linear instability of sand waves as
well as the long-term behaviour of the system and the excitation of a long bed wave
due to the sand-wave intensity curvatures). The coefficients in this equation could be
adjusted to match the observations. They would contain the necessary information
about the water flow over the sandy profile, which in the present model is obtained
by means of solving the full hydrodynamical system.

The two ways (the analysis presented in this paper on one hand, and writing down
an empirical equation, on the other) correspond to the microscopic and macroscopic
approaches in mathematical modelling. In the case of sand patterns, the microscopic
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way has been studied in this paper in great detail. The other way still needs to be
explored.

Appendix
Here we will use ideas presented in § 4 and perform a weakly nonlinear analysis

of a tidal solution over a flat bed. We will use the eddy viscosity model (2.2). The
calculations for model (2.1) are very similar.

A.1. Order ε2

At the second order, we get the following results:
(i) For m = 0, the solvability condition is satisfied automatically (G2(0) ≡ 0). The

first term in solution (4.13) is specifically included in expansion (4.2) with h2(0) ≡ B.
The second term turns out to be driven by nonlinear terms proportional to |A|2,
which defines the dependence of this mode on the slow variables. For m = 0, there
are only three boundary conditions for the differential equation, which are (4.5), (4.7)
and (4.10), so that Ψnl

2(0) is defined up to a constant.
Now let us show that condition (4.10) is satisfied by a solution of a system of the

same type as (4.4)–(4.7) if the limit k → 0 is taken in the end. This is very similar
to what happens in system (3.6)–(3.11) with k = 0. We write down the following
expression:

Ψ = Ψ0 + εAei(kc+κ/2)xΨ1(kc + κ/2) + εA∗e−i(kc−κ/2)xΨ ∗1 (kc − κ/2), (A 1)

where function Ψ1 is the solution of the linear problem (3.6). In the limit κ → 0,
expression (A 1) becomes exactly the expansion (4.2) up to first order in ε. The
mode (20) appears as a result of a nonlinear interaction of the mode Ψ1 with itself
(more precisely, the interaction of the component AEc with its complex conjugate).
Expansion (A 1) allows for a small phase mismatch (κ) between the two modes, which
will be taken to zero later on. Let us substitute expansion (A 1) in our system. The
resulting equation can be written as

LκΨ̃ 2(κ) = Fnl(κ), (A 2)

where the right-hand side comes from nonlinear interaction between the modes in
expansion (A 1). It is easy to prove that the solution of this system, which we denoted
as Ψ̃ 2(κ), in the limit κ→ 0 satisfies system (4.4)–(4.9) for the (20) mode. It is possible
to check that the normalization condition (given by equation (4.10) for the mode
(20)) follows from the boundary conditions of the system for Ψ2(κ) in the limit κ→ 0.
Therefore, we conclude that an alternative way of obtaining mode Ψ2(0) is given by

Ψ2(0) = lim
κ→0

Ψ2(κ). (A 3)

If we did not have to obtain mode Ψ3(0), we would not have to go into these details.
However, we will need mode (30) for our solvability conditions, and we will use
system (A 2) to calculate it.

(ii) For m = 1, it is more convenient to use the function Ψ̃ defined in equation
(3.16). It turns out that the system for Ψ̃nl

2(1) can be written as

L(k=kc)Ψ̃
nl
2(1) = −iAX

(
−∂L
∂k

Ψ̃c +
∂F
∂k

)∣∣∣∣
k=kc

, (A 4)

where AX ≡ ∂A/∂X, F is the same as in (3.16) and the boundary conditions are
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homogeneous (note that in this case the superscript nl is slightly misleading, this mode
is only driven by the slow variation of A in X rather than by nonlinear interactions).
On the other hand, if we differentiate equation (3.17) with respect to k at k = kc, we
get

∂L
∂k

Ψ̃c = −L∂Ψ̃ 1

∂k
+
∂F
∂k

∣∣∣∣
k=kc

. (A 5)

Therefore, we can take

Ψnl
2(1) = −iAX

∂Ψ1

∂k

∣∣∣∣
k=kc

. (A 6)

Next, we notice that because of equation (A 6), the left-hand side of solvability
condition (4.14) can be written as

AT1
− i

(
AX

∂D
∂k

+ AX
∂Γ

∂k

)∣∣∣∣
k=kc

= 0, (A 7)

where D is the the left-hand side of growth rate relation (3.14) and is therefore equal
to zero. The k-derivative of the growth rate at the critical conditions is also equal to
zero. Thus we have the solvability condition at the second order,

AT1
= 0. (A 8)

Note that the general expression for the (21) mode is,

Ψ2(1) = h2(1)EcΨc − iAXEc
∂

∂k
Ψ1

∣∣∣∣
k=kc

. (A 9)

The reason why the mode with amplitude AX enters the expansion is that the
amplitude A is space dependent so that ∂x is not exactly equal to ikc. That is why the
right-hand side of all equations can be represented as a k-derivative of the right-hand
side at the previous order. The amplitude h2(1) can be taken to be zero without loss
of generality.

(iii) For m = 2, the amplitude h2(2) turns out to be proportional to A2. Therefore
function Ψ2(2) in equation (4.2) is also proportional to A2.

A.2. Order ε3

Let us continue writing out terms in expansion (4.2). At the third order of ε we have

ε3
(

1
2
Ψ3(0)(X,T , z, t) + EcΨ3(1)(X,T , z, t)

+E2
cΨ3(2)(X,T , z, t) + E3

cΨ3(3)(X,T , z, t) + c.c.
)
. (A 10)

In our analysis, we will only need modes (30) and (31) (the former enters solvability
condition (4.12) and the latter solvability condition (4.14)).

(i) For m = 0, we note that the slow behaviour of mode Ψ3(0) comes from two
contributions, BX and |A|2X . This can be seen from the fact that the terms driving the
mode are proportional to either BX or |A|2X . In order to make the analysis more clear,
we will separate the mode (30) according to this, by writing

Ψ3(0) = ΨBX
3(0) +Ψ

|A|2X
3(0) . (A 11)

Next, we note that the equation for mode ΨBX
3(0) can be written as

L(k=0)Ψ̃
BX
3(0) = −iBX

(
−∂L
∂k

Ψ̃mean +
∂F
∂k

)∣∣∣∣
k=0

, (A 12)
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where we used the function with tilde defined in equation (3.16) in order to make the
boundary conditions homogeneous. One can see the resemblance of equation (A 12)
to equation (A 4). As before, we can set

ΨBX
3(0) = −iBX

∂Ψ1

∂k

∣∣∣∣
k=0

. (A 13)

Exactly as the mode with AX , the mode φBX3(0) arises to reflect the fact that there are
slow variations in x, and even for (n0) modes, ∂x is not exactly 0. The technique we
use to calculate the components of this mode is to ‘pretend’ that there is a small
x-dependence in the phase (instead of Be0ikcx we consider Bei(0kc+κ)x) and then take a
κ-derivative at the point κ = 0.

We shall use a similar idea for calculating the mode φ
|A|2X
3(0) . It appears owing to

nonlinear interactions between modes AEc and A∗E−1
c (by A∗ we denote the complex

conjugate of A), whose amplitude is allowed to slowly vary is space. Again, even
though the sum of the phases (EcE

−1
c ) is zero, the slow modulation in x must be taken

into account. Therefore, by analogy, we can think of the equation for the mode φ
|A|2X
3(0)

as a k-derivative of another equation, namely, the equation for the mode (20).
Of course, the equation for mode (20) does not contain k because it corresponds

to a zero power of Ec. Instead, we can use equation (A 2). It was obtained using
expansion (A 1). The small mismatch, κ, between the two interacting modes models
the fact that there is a non-trivial x-derivative of the product AEcA

∗E−1
c . Now let

us consider the structure of the driving term for the mode φ
|A|2X
3(0) . In the general

case of complex A, the time-independent component turns out to be proportional
to AXA

∗ + A∗XA = |A|2X , whereas the time-dependent component is proportional to
(AXA

∗ −A∗XA). If A is real, the time-dependent part of this mode vanishes. Note that
in the solvability condition, we will only need the time-independent component (the
rest gets averaged out to zero). Now, if A is real, it is easy to see that that equation

for the mode Ψ
|A|2X
3(0) can be written as

L(k=0)Ψ̃
|A|2X
3(0) = −i|A|2X

(
−∂Lκ

∂κ
Ψ̃ 2(κ) +

∂Fnl(κ)

∂κ

)∣∣∣∣
κ=0

, (A 14)

where function Fnl(κ) is the same as in equation (A 2). Using the same argument as
in the case of modes with AX and BX , we simply set

Ψ
|A|2X
3(0) = −i|A|2X ∂Ψ2(κ)

∂κ

∣∣∣∣
κ=0

. (A 15)

This calculation was checked by using a direct method of finding the mode Ψ
|A|2X
3(0)

(in the case of a general complex A). The time-independent part is of course the
same in the two methods. Except, the method described here is more convenient. It
contains fewer steps (i.e. the differential equations only have to be solved twice, in
first and second orders of ε), whereas the direct method also requires the solution
of the system in the third order. This means that the time–truncation must be done
three times instead of two. Every time one has to truncate, the accuracy decreases by
about 5–15%. Therefore, the procedure described in this section is preferable.

Note that the function Ψ3(0) that we found here corresponds to the second term in
expression (4.13), whereas the first contribution was taken to be zero from the start.
Mode Ψ3(0) does not enter the solvability condition until the next order in ε. At third
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order in ε, equation (4.12) simply gives

G3(0) = −BT1
= 0. (A 16)

(ii) m = 1. Mode Ψ3(1) from expansion (A 10) can be found in a straightforward
way from the corresponding equations. It is driven by terms proportional to AB and
A|A|2 (again, we take h3(1) = 0). Using this mode, the results for the second-order
modes and equation (4.14), we obtain the following solvability condition:

AT2
= σ/λcA+ γ∂2

XA+ c|A|2A+ ηAB, (A 17)

where σ, γ, c and η are real constants.

A.3. Order ε4

In order to find a non-trivial generator of the B-term we have to go to the fourth
order in ε. Using the expressions for the third-order mode Ψ3(0) and the m = 0
solvability condition, we obtain

BT2
= β∂2

XB + ξ∂2
X |A|2, (A 18)

where β and ξ are real constants. There is no contribution into the A-dynamics in
this order (AT3

= 0).

Remark. As already mentioned in connection with mode Ψ
|A|2X
3(0) , all the modes related

to slow derivatives (namely the modes Ψ2(1), Ψ
BX
3(0) and Ψ

|A|2X
3(0) ) can be obtained in a

direct way by writing out the corresponding driving force (which comes from AX ,
BX and |A|2X respectively) and solving the resulting equations. However, the way
presented in this analysis gives a better intuition about why these modes appear.
Also, numerically this method is more precise. The alternative way was used for
double checking the results.
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